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Stable Roommates for Weighted Straight Skeletons

Therese Biedl∗ Stefan Huber† Peter Palfrader‡

Abstract

In this paper, we fill in a gap in the wavefront-based
definition of weighted straight skeletons in the pres-
ence of multiple simultaneous, co-located split events.
We interpret the need to pair up wavefront edges to
restore planarity as a particular matching problem.
Our results on a stable roommate problem defined
on a directed pseudo-line arrangement show that our
method always yields a solution. We thereby com-
plete the definition of weighted straight skeletons.

1 Introduction

The straight skeleton is a skeletal structure similar to
the medial axis. It was introduced to computational
geometry almost two decades ago by Aichholzer et
al. [1]. The definition of the straight skeleton S(P )
of a polygon P , possibly with holes, is based on a
wavefront sent out by P which forms a mitered offset
WP (t) of P at any given time t ≥ 0. The wavefront
undergoes two different kinds of topological changes
(so-called events) over time: Roughly speaking, an
edge event happens when a wavefront edge collapses
and a split event happens when the wavefront splits
into parts. The straight skeleton S(P ) of P is defined
as the geometric graph whose edges are the traces of
the vertices ofWP , see Fig. 1. Similar to Voronoi dia-
grams and the medial axis, straight skeletons became
a versatile tool for applications in various domains of
science and industry [7].

Eppstein and Erickson [5] were the first to mention
weighted straight skeletons, where wavefront edges
do not necessarily move with unit speed. Weighted
straight skeletons are used in different applications [2,
6, 8, 9] but also constitute a theoretical tool to gen-
eralize straight skeletons to 3D [3]. Even though
weighted straight skeletons have already been ap-
plied in both theory and practice, only recently Biedl
et al. [4] showed that basic properties of ordinary
straight skeletons do not carry over to weighted
straight skeletons in general. Biedl et al. [4] also pro-
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posed solutions for an ambiguity in the definition of
straight skeletons caused by certain edge events and
first mentioned by Kelly and Wonka [8] and Huber [7].

In this paper, we discuss another open problem in
the definition of weighted straight skeletons caused
by split events. An event happens due to a topo-
logical change in the wavefront and the event han-
dling is guided by one fundamental principle: Between
events, the wavefront is a planar1 collection of wave-
front polygons. This is easily achieved when handling
edge events and “simple” split events. However, is it
always possible to handle multiple simultaneous, co-
located split events in a fashion such that the wave-
front remains planar?

Figure 1: The straight skeleton S(P ) (blue) of the
input polygon P (bold) is defined by the wavefront
WP (gray) emanated from P .

We can answer this question to the affirmative and
therefore show how to define weighted straight skele-
tons safely in the presence of multiple simultaneous,
co-located split events. (Note that due to the discon-
tinuous character of straight skeletons, it is not pos-
sible to tackle this problem by means of simulation of
simplicity.) We first rephrase this problem as a so-
called planar matching problem of directed pseudo-
lines and show how to transform the planar match-
ing problem into a stable roommate problem. For the
main result, we prove that our particular stable room-
mate problem at hand always possesses a solution and
those solutions tell us how to do the event handling
of the wavefront in order to maintain planarity.

2 Weighted straight skeletons

The wavefront. For our further discussions it will be
necessary to define precisely what we mean by edge

1By “planar” we mean that the embedding is planar, i.e.
only adjacent edges intersect at their common endpoint.
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Figure 2: A multi-split event occurs at location p.
The involved edges form 4 chains. Exactly 8 involved
edges do not collapse (arrows).

and split events. Let P denote a polygon with holes.
Following the notation by Biedl et al. [4], we denote
by σ(e) ∈ R \ {0} the weight of the edge e of P and
call σ the weight function. For every edge e of P
let n(e) denote the normal vector of e that points to
the interior of P . Initially, every edge of P sends
out a wavefront edge with fixed speed σ(e). That is,
the segments of the wavefront WP,σ(t) at time t that
originate from the polygon edge e are contained in
e+ t · σ(e) · n(e), where e denotes the supporting line
of e. If σ(e) is negative, the wavefront edge emanated
from e moves to the exterior of P .

Events. Intuitively, an event happens when a wave-
front vertex meets another wavefront edge or, in
particular, another wavefront vertex. The situation
becomes more complicated when two or more such
events are co-located at the same time t. Assume
that WP,σ(t′) remains planar for all t − δ0 < t′ < t
and δ0 > 0. In particular, no three edges occupy a
common locus. For this time interval, we can con-
sider WP,σ to be a kinetic planar straight-line graph
(PSLG) with a fixed set of kinetic vertices and edges
and we denote by e(t′) the segment that is occupied
by edge e ofWP,σ at time t′. Furthermore, we denote
by B(p, r) the closed disk centered at p with radius r.

Definition 1 Let e1, . . . , en be the edges of the wave-
front WP,σ(t − δ) for a sufficiently small δ > 0. At
location p at time t an event happens if there are in-
dices {i1, . . . , ik}, with k ≥ 3, such that

∃ε0 > 0 ∀0 < ε < ε0 ∃δ0 > 0 ∀0 < δ < δ0 :

ej(t− δ) ∩B(p, ε) 6= ∅ ⇔ j ∈ {i1, . . . , ik}.
We call ei1 , . . . , eik the edges that are involved in the
event.

In other words, an event happens when for each
ball of a sequence of shrinking balls around p there

exists an interval ending in time t such that the set of
edges intersecting the ball throughout that interval is
constant and the same for all balls.

If an event happens at location p and time t then
planarity of WP,σ(t) is violated locally at p as all in-
volved edges meet at p. The goal of the event handling
is to restore planarity locally. We can classify events
as follows.

Definition 2 We call the event at location p and
time t elementary if three edges are involved. We
call it an edge event if B(p, ε) \ WP,σ(t − δ) consists
of two connected components and a split event other-
wise. Non-elementary edge and split events are called
multi-edge and multi-split events respectively.

It is known how to handle edge events and elemen-
tary split events [4]. In the following, we will show
how to handle multi-split events in a way such that
planarity is locally restored.

Pairing edges. Suppose a multi-split event happens
at location p and time t. Note that WP,σ(t − δ) ∩
B(p, ε) consists of k polygonal chains, see Fig. 2. For
every involved edge either zero, one, or both endpoints
approach p as time goes to t. In latter case, the in-
volved edge collapses to length zero and is removed.
In the first case, we simplify the further discussion by
splitting the edge by a wavefront vertex within B(p, ε)
that reaches p at time t. Now we have precisely 2k
wavefront edges that remain and which have exactly
one endpoint that reaches p at time t.

The goal is now to find a pairing for these 2k edges
such that (i) we reconnect a pair of edges by a new
wavefront vertex and (ii) the resulting wavefront is
planar again after time t locally at p. In the following,
we will rephrase the problem of finding such a pairing
as a particular matching problem. For the sake of
simplicity, we assume for the supporting lines of the
2k edges that (i) every pair intersects in exactly one
locus and (ii) no triple intersects (except for isolated
points in time).2

3 Matchings and roommates

Planar matchings. In this section, assume we keep
propagating the wavefront without change after a
multi-split event, resulting in non-planarity of the
wavefront at time t + δ around p. We choose ε0, δ0
small enough such that for all ε, δ with 0 < ε < ε0 and

2In order to achieve these requirements, we can think of
rotationally perturbing the wavefront edges in a specific way.
Undoing the perturbation may destroy planarity in the strict
sense, but yields planarity in a weaker sense where wavefront
edges may touch. We can also show that for some input such
“touching” cannot be avoided. Due to space limitations we
cannot go into details here.
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0 < δ < δ0 no non-involved edge of WP,σ(t+ δ) inter-
sects B(p, ε), the intersection points among the sup-
porting lines of involved edges are contained within
B(p, ε), and no triple of supporting lines intersected
again. We denote by l1, . . . , lN the line segments oc-
cupied by the N = 2k non-collapsed involved edges at
time t+ δ. We can choose ε0 small enough such that
exactly one endpoint of each li is contained in B(p, ε).
Hence, we can orient l1, . . . , lN such that they point
inside B(p, ε), see Fig. 2. Extending all li to their sup-
porting lines li gives us an arrangement of N directed
lines where each pair intersects in a unique locus.

We generalize this arrangement to a pseudo-line
arrangement L of N directed pseudo-lines `1, . . . , `N
whose intersections are contained in B(p, ε). We as-
sume that no pseudo-line intersects itself, every pair of
pseudo-lines intersects exactly once, no three pseudo-
lines intersect in a point, every directed pseudo-
line begins and ends at infinity and intersects the
boundary bdB(p, ε) exactly twice. The direction
of a pseudo-line ` allows us to distinguish between
the begin-point b(`), at its first intersection with
bdB(p, ε), and the end-point, at its last intersection
with bdB(p, ε).

A matching in L is a grouping of `1, . . . , `N into
pairs of matching partners. The matching tail of `i is
the part of `i from b(`i) to the intersection point with
its matching partner.

Definition 3 A matching in L is planar if no two
matching tails intersect except at their ends.

The matching tails play the role of the wavefront
edges after the event. The matching tells us how to
pair up the wavefront edges in order to restore pla-
narity locally at p.

Lemma 1 There exists a planar offset after the event
if and only if there is a planar matching for L.

The solutions of the planar offset problem and the
planar matching problem are in a one-to-one corre-
spondence and, thus, the planar offset problem may
have multiple solutions. The main result of this paper
is the following theorem, which says that at least one
solution always exists.

Theorem 2 Every directed pseudo-line arrangement
has a planar matching.

The stable roommate problem. Assume we have an
even number N of elements a1, . . . , aN . Each element
has a ranking (i.e., preference list) of elements. The
rankings are complete (all elements are contained) and
strict (no two elements are ranked the same). Let M
be a matching of a1, . . . , aN and let M(ai) denote the
matching partner of ai. A pair {ai, aj} is a blocking
pair if ai prefers aj over M(ai) and aj prefers ai over

M(aj). A matching is stable if there is no blocking
pair. The stable roommate problem asks for a stable
matching for a1, . . . , aN and their rankings. The sta-
ble roommate problem is a well studied problem in
optimization and it is well known that not every in-
stance of the stable roommate problem has a solution.

Let us again consider the pseudo-line arrangement
L. As we walk along a pseudo-line `i from its begin-
point to its end-point we encounter all other pseudo-
lines in L. This order naturally gives us a complete
and strict ranking for `i if we attach `i itself at the
end of the list. Thus, L defines an instance of the sta-
ble roommate problem. The following lemma trans-
lates the planar matching problem to the correspond-
ing stable roommate problem.

Lemma 3 A directed pseudo-line arrangement has
a planar matching if and only if the corresponding
stable roommate instance has a stable matching.

Proof. Let M be a matching. The matching tails of
two pseudo-lines `i, `j cross if and only if `i prefers
`j over M(`i) and `j prefers `i over M(`j). Hence,
the matching is non-planar if and only if there is a
blocking pair. �

In light of this lemma, we will prove Thm. 2 by
showing that the stable roommate problem defined by
L has a solution. In order to do so, we need to review
a few results concerning stable roommate problems,
mostly based on the paper by Tan and Hsueh [10].

Stable partitions. Let A be a set of an even number
N of elements a1, . . . , aN , together with complete and
strict preference lists, and let π be a bijective map
A → A. This function partitions A into one or more
cycles, i.e., sequences a′0, . . . , a

′
k−1 in A with a′0

π−→
a′1

π−→ . . .
π−→ a′k−1

π−→ a′0. A cycle with k ≥ 3 is called
a semi-party cycle if a′i prefers π(a′i) over π−1(a′i). A
semi-party partition is a permutation where all cycles
with k ≥ 3 are semi-party cycles.

Given a semi-party partition π, a pair {ai, aj}
is called a party-blocking pair if ai prefers aj over
π−1(ai) and aj prefers ai over π−1(aj). A stable
partition is a semi-party partition that has no party-
blocking pairs. The cycles of a stable partition are
called parties. An odd (even) party is a party of odd
(even) cardinality. Furthermore, ai, aj are party part-
ners if ai = π(aj) or aj = π(ai).

Theorem 4 ([10]) For any instance A of the stable
roommate problem the following statements hold:

1. A has a stable partition and it can be found in
polynomial time.

2. A has a stable matching if and only if it has a
stable partition with no odd parties.

3. If A has a stable matching, then it can be found
in polynomial time.
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No odd parties in L. Thm. 4(1) gives us a stable
partition π for L. Let a singleton-party, a pair-party,
and a cycle-party be a party consisting of one, two,
and at least three pseudo-lines, respectively. For two
pseudo-lines `, `′ let `×`′ be the point of intersection.
For all pseudo-lines ` posing a singleton-party, let its
tail be the part of ` between begin- and end-point.
For all other pseudo-lines ` let their tail be the part
between b(`) and `× π−1(`).

Lemma 5 The tails of two pseudo-lines `, `′ do not
intersect unless ` and `′ are party-partners.

Proof. Assume that `× `′ belongs to both tails, but
` and `′ are no party-partners. Then ` prefers `′ over
π−1(`) and `′ prefers ` over π−1(`′). Hence, {`, `′} is a
party-blocking pair and π is not a stable partition. �

Lemma 6 There cannot be two cycle-parties.

Proof. Assume we have two cycle-parties P1 and P2.
We consider the graph G whose vertex set comprises
b(`) and ` × π(`) for every pseudo-line ` in P1 ∪ P2.
We connect all b(`) cyclically by edges drawn on
bdB(p, ε). We also add edges from b(`) to ` × π(`)
and from `× π(`) to π−1(`)× `, both drawn on `. By
Lem. 5 the graph G is planar.

First of all, G contains a path b(`) → ` × π(`) →
π−1(`) × ` ← b(π−1(`)) for any ` in P1 ∪ P2.
Secondly, the sequence b(`), b(π(`)), b(π(π(`))), . . . of
begin-points of a single party appear in cyclic order on
bdB(p, ε). Hence, we can renumber all pseudo-lines
`1, . . . , `m in P1∪P2 such that (i) b(`1), . . . , b(`m) ap-
pear cyclically on B(p, ε) and (ii) `1, . . . , `k are from
P1 and `k+1, . . . , `m are from P2.

Let the P1-region be the region of B(p, ε) enclosed
by the cycle formed by b(`1), . . . , b(`k) and the 3-path
connecting b(`k) and b(`1). Likewise, the P2-region
is given by b(`k+1), . . . , b(`m) and the 3-path between
b(`m) and b(`k+1). Note that the P1-region and the
P2-region are disjoint.

As `1 and `m belong to L, they need to intersect
within B(p, ε). But `1 starts at b(`1), lives on the
boundary of the P1-region until `1 × `k, and then en-
ters the P1 region. From there it cannot leave the
P1-region without intersecting `1 itself or `k a sec-
ond time or by leaving B(p, ε). Once it left B(p, ε),
it cannot reenter again. Similarly, `2 is bound to the
P2-region within B(p, ε). As the P1-region and the
P2-region are disjoint, `1 and `m have no intersection,
which is a contradiction. �

A similar argument shows the following lemma:

Lemma 7 There cannot be a singleton-party and a
cycle-party.

The following theorem finally proves Thm. 2 by
Lemma 3 and Thm. 4(1-2).

Theorem 8 No instance of a stable roommate prob-
lem defined by a directed pseudo-line arrangement L
can have an odd party.

Proof. Assume to the contrary that there is an odd
party P . As L comprises an even number of pseudo-
lines, there needs to be another odd party P ′. Lem. 6
and Lem. 7 imply that P and P ′ need to be both
singleton-parties. Since elements prefer themselves
least, P and P ′ constitute a party-blocking pair. �

By Thm. 4(3) we can hence find a stable matching,
and with it a planar post-event wavefront, in polyno-
mial time.
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B. Gärtner. Straight Skeletons of Simple Polygons.
In Proc. 4th Internat. Symp. of LIESMARS, pages
114–124, 1995.

[2] F. Aurenhammer. Weighted Skeletons and Fixed-
Share Decomposition. Comput. Geom. Theory and
Appl., 40(2):93–101, July 2008.

[3] G. Barequet, D. Eppstein, M. T. Goodrich, and
A. Vaxman. Straight Skeletons of Three-Dimensional
Polyhedra. In Proc. 16th Annu. Europ. Symp. Algo-
rithms, pages 148–160, Sept. 2008.

[4] T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Pal-
frader. Weighted Straight Skeletons In The Plane. In
Proc. 25th Canad. Conf. Comput. Geom.(CCCG’13),
pages 13–18, Aug. 2013.

[5] D. Eppstein and J. Erickson. Raising Roofs, Crashing
Cycles, and Playing Pool: Applications of a Data
Structure for Finding Pairwise Interactions. Discrete
Comput. Geom., 22(4):569–592, 1999.

[6] J.-H. Haunert and M. Sester. Area Collapse and Road
Centerlines Based on Straight Skeletons. GeoInfor-
matica, 12:169–191, 2008.

[7] S. Huber. Computing Straight Skeletons and Motor-
cycle Graphs: Theory and Practice. Shaker Verlag,
Apr. 2012. ISBN 978-3-8440-0938-5.

[8] T. Kelly and P. Wonka. Interactive Architectural
Modeling with Procedural Extrusions. ACM Trans.
Graph., 30(2):14:1–14:15, Apr. 2011.

[9] R. Laycock and A. Day. Automatically Generating
Large Urban Environments Based on the Footprint
Data of Buildings. In Proc. 8th Symp. Solid Modeling
Applications, pages 346–351, June 2003.

[10] J. J. Tan and Y.-C. Hsueh. A generalization of the
stable matching problem. Discrete Applied Mathe-
matics, 59(1):87–102, 1995.


	Introduction
	Weighted straight skeletons
	Matchings and roommates

